
www.manaraa.com

Research Article
Design of Optimal QFT Controller and Prefilter for Buck
Converter Using Metaheuristic Algorithms

Nitish Katal and Shiv Narayan

Electrical Engineering Department, Punjab Engineering College (Deemed to Be University), Chandigarh, India

Correspondence should be addressed to Nitish Katal; nitishkatal@gmail.com

Received 28 August 2018; Accepted 8 November 2018; Published 2 December 2018

Academic Editor: Ricardo Perera

Copyright © 2018 Nitish Katal and Shiv Narayan. &is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

A buck converter is a step-down switching regulator. Buck convertors are being widely used in industrial applications that rely on
regulated output voltage under fluctuating input voltage. A buck convertor works in the following modes: (a) current-controlled
or (b) voltage-controlled mode. But these convertors manifest several nonlinearites because of the switching operation. Hence, in
order to generate a quality output of the convertor, the design of a controller becomes crucial. In this paper, the synthesis of a QFT-
based robust controller and prefilter has been carried out for an uncertain buck converter with varying input voltage and varying
load. &e controller synthesis problem has been posed as an optimization problem, and metaheuristic algorithms have been used
for obtaining the optimal gains for the QFTcontroller and prefilter. By doing this, the QFTsynthesis can be carried out in a single
step instead of following the sequential classical QFTprocess on Nichols charts and the need for the generation of templates and
bounds has be eliminated. &e designed 2-degree-of-freedom QFTcontrol system offers a robust behavior and efficiently handles
the parametric uncertainties. &e robustness of the designed controller has been confirmed through simulation results for large
input voltage and load fluctuations.

1. Introduction

Buck converters are center to various diverse applications
that require a tunable/fixed DC supply form a fixed/tunable
DC supply such as aerospace, instrumentation, medical
appliances, and computers. [1]. &e regulation in such
convertors is accomplished using pulse width modulation
(PWM). &e effect of such nonlinear switching and oper-
ational losses due to the continuous operation is often not
considered in the controller synthesis process. &us, mod-
eling of plant ignorance, parametric uncertainty, non-
linearities, etc. in control system synthesis becomes crucial,
so that the designed converter should assure quality output
when operated for a long time, despite uncertainties in the
system or any load variations etc. [2].

In the literature, several classical control methods have
been implemented for the linearized buck convertor models
but under the influence of uncertainties the performance of
the convertors degrades [3]. Over years to mitigate the

influence of such uncertainties, many robust control
methodologies like H2, H∞, and μ-synthesis were estab-
lished, and still these established theories ignored do not
address the modeling of uncertainties in the plant model
during the design process [4].

In 1960s, Issac Horowitz introduced Quantitative
Feedback &eory (QFT). QFT has 2-degree-of-freedom (2-
DoF) controller architecture, viz., (a) controller K(s) and (b)
prefilter F(s), and the effect of closed loop uncertainties is
reduced by the feedback controller while the feedforward
prefilter shapes the desired frequency response. &e QFT
design process consists of several sequential steps, and the
controller and prefilter is designed using loop shaping on
Nichols charts. &e loop-shaping process requires a lot of
experience, and still there is no guarantee that an optimal
controller has been designed.

&is paper introduces an automated single-step QFT
controller synthesis technique for buck convertors using
metaheuristic algorithms. &e desired QFT bounds and
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performance objectives for the voltage mode control in the
buck convertor have been expressed in terms of design
objectives and constraints.&eQFTcontroller system design
problem has been expressed as an optimization problem.
&is eliminates the generation of the templates and bounds
which else are required for the manual loop shaping. &e
designed control system offers a robust response over a
range of parametric uncertainty both in frequency and time
domain and also offers performance robustness for large
input voltage variations. &e work has also been compared
with classical controller synthesis methods like Ziegler–
Nichols, internal mode control (IMC), and the QFT con-
troller proposed by Ibarra et al. [5] using the classical QFT
design approach.

&e paper has been split into subsequent sections: in
Section 1, the ripples and other factors that limit the per-
formance of buck convertors and how the QFT controllers
can be beneficial are discussed. In Section 2, state-of-the-art
literature has been reviewed. In Section 3, modeling of the
buck convertor has been discussed. In Section 4, basics of
QFT and the metaheuristic algorithms have been discussed.
In Section 5, QFT design requirements for the buck con-
vertor have been discussed, followed by the synthesis of the
QFT controller for buck convertor using metaheuristic al-
gorithms in Section 6. Results have been discussed in Section
7. In Section 8, the designed QFT controller has been used
for the validation of the buck convertor for varying input
voltages followed by conclusions and references.

2. Literature Review

Often, modeled plant dynamics have a lot of assumptions,
and the operation of the plant and due to the aging of the
instruments overtime lead to the deviation of the plant’s
nominal dynamics that were used while controller design.
&is makes it difficult to assure quality control over time. To
address this issue, several control theories likeH∞,H2, LQR,
and μ-synthesis have been established, so that the designed
control system must not deviate from its state in case of
uncertainties [4]. But these control theories ignore the fact
that the model used in controller synthesis is just the inexact
model of the real plant [4].

In 1960s, Issac Horowitz introduced a frequency-do-
main controller design technique of Quantitative Feedback
&eory (QFT) [4] based on Bode’s gain-phase integrals.
QFT’s foundation is laid on the shaping of the feedback such
that desired limits of robust stability, reference tracking, and
disturbance rejection are satisfied. QFT has a 2-DoF control
configuration, i.e., has a controller K(s) in the feedback loop
and a prefilter F(s) prior the loop in feedforward configu-
ration. &e feedback controller K(s) mitigates the effect of
closed loop variabilities, and the prefilter is designed to
shape the input in such a way that a desired output is ob-
tained both in time and frequency domains.

QFT has found application is several diverse engineering
applications [6–14]. In these applications, manual loop
shaping has been used for the synthesis of the QFTcontroller
and prefilter. Manual loop shaping is carried out on Nichols
charts and requires a lot of experience; the success of the

design solely depends on the expertise of the engineer,
and it is very hard to synthesize controllers for uncertain
and nonminimum phase systems with complicated
characteristics.

Recently, many researchers have emphasised on the
automatic synthesis of QFT controllers. Gera and Horowitz
[15] followed by Ballance [16] introduced a semi-iterative
process for QFT controller synthesis, but very high-order
controllers were obtained. But these approaches [17–19] are
based on several unrealistic assumptions or a very conser-
vative design as they solve the complicated nonlinear
problem with complex or linear programming. Zolotas and
Halikias [20] used the approach of obtaining the optimal
QFT controllers by searching among the dense set of con-
trollers. Patil et al. [21] automated the loop shaping pro-
cedure by translating the QFTdesign requirements and used
the interval constraint satisfaction technique (ICST) for the
automation process [22–27]. &e controllers designed with
the ICST-based approach suffer from overdosing over the
frequency range.

Metaheuristic algorithms are now been widely used for
the design of control systems. QFT control synthesis cannot
be accomplished by using conventional gradient-based
optimization algorithms. Several evolutionary algorithms
have been used for the synthesis of the QFT controllers.
Gracia-Sanz et al. [28] and Chen et al. [29] implemented GA
for the automatic loop shaping of QFT controllers. Evolu-
tionary algorithms have been used by Kim and Chung [30].
Molins and Garcia-Sanz [31] obtained robustly stable QFT
controllers using both genetic and evolutionary algorithms.
A robust PID type QFT controller has been designed by
Satpati et al. [32] using PSO for automating the loop shaping
process for time-delay systems. Meng and Xue [33] also used
PSO for designing the fractional order of QFTcontrollers for
the nonminimum-phase hydrosystem [34, 35]. But, some of
these still require the generation of templates and bounds on
Nichols chart for design purposes.

Still the applications of such algorithms in electrical
engineering particularly in power electronics are very lim-
ited. Olalla et al. [36] elucidated on the QFT-based robust
controller design for direct drive multipole wind turbines.
Anmol R. Saxena and Veerachary [9] employed QFT for
designing robust voltage mode control for higher order
boost DC-DC switching power convertors. Khodabakhshian
and Hemmati [10, 37] put to use QFTfor robust control of a
power system stabiliser (PSS) and DVR for distribution
systems. &e design of robust decentralised multimachine
power system stabilisers (PSSs) ensures damping electro-
mechanical oscillations and enhances the power system
stability. Igrec et al. [38] presented QFT-based robust ve-
locity control for series wound DC motors. Alavi and Saif
[11] implemented a QFT-based robust control of integrated
fault detection and control.

For the buck convertor, QFT has been employed for
tackling the parametric uncertainty. In [5], classical QFT has
been used for designing the robust controller. In [39], the bat
algorithm has been used for the design of the robust H∞
controller. In [40], the efficacy of the QFT-based PID
controller over a Ziegler–Nichols-tuned PID controller has
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been demonstrated. Still there is a lot of scope for mini-
mizing the current and voltage ripples in the buck convertor,
and QFT offers a promising solution to the problem.

3. Modeling of the DC-DC Buck Converter

&e dynamics of the DC-DC convertor has been by small-
signal state-space averaging to obtain a set of time-invariant
equations [5]. Figure 1 shows the circuit diagram for a
conventional buck regulator.

A buck convertor primarily operates in two configura-
tions: (a) continuous current mode (CCM) and (b) dis-
continuous current mode (DCM). In this work, the
continuous current mode (CCM) mode has been considered
for the controller synthesis. For a duty cycle, equation (1)
gives the current GiD(s) transfer function and equation (3)
gives the voltage GVD(s) transfer function. Table 1 shows the
parameters of the elements used in this paper:

GiD(s) �
VIN s CR + CrC( 􏼁 + 1( 􏼁

CLR · s2 + A · s + R + rL + rs( 􏼁
, (1)

where

A � L + CRrL + C Rrs + rC R + LS + rL + rs􏼂 􏼃( 􏼁( 􏼁, (2)

and

GVD(s) �
VIN × RrC s CR + CrC( 􏼁 + 1( 􏼁

A · s2 + B · s + R + rC( 􏼁 · R + rL + rs( 􏼁
, (3)

where

A � R + rC( 􏼁 · CLR + CLrC( 􏼁,

B � R + rC( 􏼁 · L + CRrC + CrCrL + CrCrs + CR rL + rs( 􏼁( 􏼁.

(4)

4. Background

4.1. Quantitative Feedback +eory. Quantitative Feedback
&eory (QFT) is a frequency-domain controller synthesis
methodology introduced by Issac Horowitz in 1960s. QFT is
based on Bode’s famous gain-phase integrals and has a 2-
DoF controller configuration as shown in Figure 2, a con-
troller K(s) which minimizes the effect of external distur-
bances, and a prefilter F(s) which is used to shape the desired
frequency response. In QFT, templates portray the degree of
unpredictability in the plant on z-plane and the required
performance indices in the form of bounds. &e practicality
of the controller design is measured using templates, and
bounds provide the blueprint for shaping the open-loop
transmission on the Nichols chart at each design frequency
of interest. &e controller is designed by shaping the open-
loop transmission on the Nichols charts such that all the
bounds are satisfied at each frequency of interest.

4.2. Bat Algorithm. In 2010, Yang proposed a metaheuristic
algorithm of the bat algorithm (BA), which was established
upon the echolocation behavior of the bats [41]. Bats use
echolocation to search their prey and also to categorize
distinct types of insects at night. An initial population of bats

is generated and has their respective positions xi. Mathe-
matically, the motion of the flying of the bat is given as

fi � fmin + fmax −fmin( 􏼁 · β,

v
t+1
i � v

t
i + x

t
i −x
∗

􏼐 􏼑 · fi,

x
t+1
i � x

t
i + v

t
i ,

(5)

where xi is the position of the bat, vi is the velocity by which
the bat is moving and the updated positions xt

i after the flight
and velocities vt

i at time t, uniformly distributed β ∈ [0, 1]

random vector, x∗ is the current best global location for all n
bats in the population. Initially, each bat is assigned with
uniformly distributed frequency [fmin, fmax].

When prey is identified by a bat, the loudness Ai is
updated and the rate by which the pulse is being emitted ri

increases. Here, the initial loudness A0 is 1, and a prey is
identified by the bat, Amin � 0:

A
t+1
i � α · A

t
i ,

r
t
i � r

0
i 1− e

−λ·t
􏼐 􏼑,

(6)

α and c are fixed, and for 0< α< 1, c> 0:

RS

RL VOUT

VIN

L

D
C

R

RC

+

–

Figure 1: Conventional buck convertor.

Table 1: Values of the elements used in the DC-DC buck convertor.

Parameter Symbol Value
Input voltage VIN 24V
Inductor L 300 μH
Capacitor C 220 μF
Load R 12Ω
PWM period Ts 10 μs
PWM duty cycle D 1
tON switch resistance rs 0.01Ω
Inductor resistance rL 16.3mΩ
Capacitor resistance rC 0.305Ω

Prefilter
F(s)

Controller
K(s)

Plant
P(s)

r(t) e(t) u(t) y(t)
+–

Figure 2: 2-Degree-of-freedom QFT control configuration.
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A
t
i⟶ 0,

r
t
i⟶ r

0
i ,

as t⟶∞.

(7)

&e values of loudness and pulse emission rates are
modified only when improved new solutions are obtained.

4.3. Flower Pollination Algorithm. Flower pollination algo-
rithm is inspired by the occurrence of pollination that occurs
in flowering plants [42] and is a medium of procreation in
plants. It has been introduced in 2012 by Yang. In polli-
nation, the pollens are transferred through pollinators like
wind, birds, insects, animals, and other mediums. &e fer-
tilization of a flower in pollination can happen via self-
pollination or allogamy. When the fertilization of the flower
happens either from itself or from the different flower from
the same plant, it is remarked as self-pollination, and if the
pollens are from the different plant, then in that case, it is
termed as allogamy or cross pollination.

Following four steps in pollination characterize the
flower pollination algorithm [42]:

(1) For the pollination to occur from one flower to other,
the pollinators perform Lévy flights and are regarded
as global pollination

(2) Self-pollination is regarded as local pollination
(3) &e more fertile the flower is, the greater the chances

of the reproduction probability are
(4) &e rate of global and local pollination is controlled

by a switching probability, p ∈ [0, 1]

In global pollination, pollens are transmitted via polli-
nators, and the fertility of the flower secures pollination and
the selection of the most fertile flower. Mathematically, it is
represented as

x
t+1
i � x

t
i + L x

t
i −g∗􏼐 􏼑, (8)

where xt
i is the ith pollen at iteration t and g∗ is the present

best solution at the current iteration. Pollination is con-
trolled by L and is the step size. So, pollinators have to travel
over an extent by performing Lévy flights. So, Lévy distri-
bution is drawn as L> 0 and is given as follows:

L ∼
λΓ(λ)sin(πλ/2)

π
1

s1+λ, s>> s0 > 0( 􏼁, (9)

where Γ(λ) is the standard gamma function and the Lévy
distribution is acceptable for big flights with s> 0.

Mathematically, the flower constancy in self-pollination
and is given as follows:

x
t+1
i � x

t
i + ε x

t
j −x

t
k􏼐 􏼑, (10)

where xt
j and xt

k are pollens from distinct parents but be-
longing to identical species. Local random search is used if
the p xt

j and xt
k are selected from the identical population

and ε is chosen as uniform distribution, i.e., ε ∈ [0, 1].
Predominantly, flower pollination happens both at local

and global extent. In case of nearby flowers, local pollination

is dominant. So, switching probability p controls whether
the pollination will be a global or local one and is 0.8.

4.4. Artificial Bee Colony Algorithm. Artificial bee colony
(ABC) algorithm has been introduced by Karaboga and
Basturk in 2005 and is based on the intelligent behavior of
honeybees [43]. ABC is based upon the wide search of bees
performing for searching the food and has three important
components: employed bees, onlookers, and scouts. An
employed bee is the one that inspects the food source
inspected by it earlier, onlooker bees wait in the dancing area
before choosing to go in search for food, and the bees that
perform a random search is known as scout. &e ABC al-
gorithm has been divided into the following phases.

4.4.1. Initialization Phase. In the initialization phase, each
bee in the population is assigned with a random location xi,
given as follows:

xi � li + rand(0, 1)∗ ui − li( 􏼁, (11)

where xi is the food source of the ith bee, ui is the upper
bound of xi bee, li is the lower bound of xi, and rand(0, 1) is
any random number between 0 and 1.

4.4.2. Employer Bee Phase. In this stage, the employer bee
phase will perform search for the food vi, in the neigh-
borhood of the food source xi as per its pervious memory. It
is given mathematically as follows:

vi � xi + φi xi − xk( 􏼁, (12)

where vi is the new food item of the ith employed bee, xi is
the position of the ith bee, and φi is randomly chosen and lies
between [−1, 1].

4.4.3. Onlooker Bee Phase. In this phase, the onlooker bees
dance in the waiting area in the hive to share information
regarding the employer bees. Based upon the probability of
food and distance from the hive, the onlooker bees make
their decision and are given mathematically as follows:

Pi �
fit xi( 􏼁

􏽐
SN
k�1 fit xk( 􏼁

, (13)

where Pi is the probability of selection of the source by the
bee, SN is the total number of bees in the colony, and fit(xi)

is the fitness of the ith bee.
Based upon the information shared, the onlooker bee

will search the neighborhoods and calculate its fitness.
Comparing the fitness of the current position with the
previous one, the onlooker bees choose the new position.

4.4.4. Scout Bee Phase. After a certain iterations/searches, if
an employed bee does not change its position, it becomes a
scout. Scout bees are limited to one in a current cycle and
performs search for the new food sources. When a new food
location is found, it stores that in its memory till maximum
number of cycles has been reached.
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4.5. Biogeography-Based Optimization. In 2008, Simon in-
troduced a biogeography-based optimization algorithm
[44], based upon the migration of species from one island to
another. It is an evolutionary algorithm that leads to the
generation of some new species and the extinction of some
other. &e relocation of species is governed by the habitat
suitability index (HSI). A habitat/island with higher HSI is
regarded as more suitable for living, and the lower HSI
means that it is not suitable. Various features like vegetation,
water, area, and temperature feature the habitat and are
called as the suitability index variables (SIV). A habitat with
high HSI has a higher emigration rate and lower immi-
gration rate. Mathematically, it can be given as

λ � I · 1−
S

SMAX
􏼠 􏼡,

μ �
E · S

SMAX
,

(14)

where S is the number of species in equilibrium, SMAX is the
maximum number of species, μ is the emigration rate, and λ
is the immigration rate.

&e probability PS changes from time t to time (t + Δt)
and is given mathematically as

PS(t + Δt) � PS 1− λSΔt− μSΔt( 􏼁 + PS−1λS−1Δt + PS+1μS+1Δt,
(15)

where λS and μS are the immigration and emigration rates
for S species in the habitat.

Two important operators: (a) migration and (b) muta-
tion, govern the BBO algorithm. A habitat/island with
higher HSI is regarded as more suitable for living, and the
lower HSI means that it is not suitable. Migration is an
adaptive activity. Probability Pmod is used to modify the
information gathered from the species during the process of
emigration and immigration to modify the SIV. Elitism is
preserved in the BBO, to preserve the best solutions from
being abandoned. Mutation refers to calamities that change
the HSI and disturb the equilibrium of the species. So due to
these calamities, the HSI of the habitat can abruptly change
and is regarded as SIV mutation and the rate of mutation is
dependent on the species count probability. Elitism is
preserved in this stage too, in order to favour the best so-
lutions. Mathematically, mutation rate is given as

m � mmax 1−
PS

PMAX
􏼠 􏼡􏼠 􏼡, (16)

where PS is the probability of S species on a island, PMAX is
the maximum number of species, and mmax is the maximum
mutation rate.

4.6. Harmony Search Algorithm. In 2000, Geem and Loga-
nathan introduced a population-based algorithm which is
based on the principles of the extemporization process in
jazz instruments [45]. While composing a harmony, mu-
sicians try out various possible musical pitches they re-
member, so that by using an optimal combination of such

pitches they compose a perfect harmony. Harmony search
algorithm comprises the following steps:

(1) Initialization of the randomly generated harmony
search memory (HM). For an n-dimensional prob-
lem, the solution space can be given as

HM �

x1
1 x1

2 x1
3 . . . x1

n

x2
1 x2

2 x2
3 . . . x2

n

⋮ ⋮ ⋮ ⋮ ⋮

xHMS
1 xHMS

2 xHMS
3 . . . xHMS

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where [x1
1, x1

2, x1
3, . . . , x1

n](i � 1, 2, 3, . . . ,HMS) is the solu-
tion vector.

(2) In this step, a now improved result [x1′, x2′, x3′, . . . , xn
′]

is produced from the HM. Harmony memory con-
sidering rate (HMCR) controls the probability of the
selection of a HM, and the pitching adjust rate (PAR)
controls the probability of a HM to be mutated. &ese
parameters of HMCR and PAR mimic the crossover
and mutation like that of GA, but in GA, there is a
limitation on the parents in the selection phase, while
in the harmony search, the selection is across the
array.

(3) In this step, the HM is updated.&e fitness of the new
solutions is evaluated, it returns a better value than
the worst in the HM, and the worst one is replaced by
the new solution. If not, the new solution is
discarded.

(4) Repeat steps 2 and 3 till the stopping criterion is
reached.

&e harmony search algorithm has many operators like
those in evolutionary algorithms, but harmony search differs
from all as it offers single search memory for the solution to
evolve. &is also boosts the convergence speed of the
algorithm.

4.7. Differential Evolution. Differential evolution (DE) [46]
is a population-based stochastic direct search optimization
algorithm and uses the operators of crossover, mutation, and
selection. Mutation operator is the zeal of DE for producing
better results, while in GA, crossover is used. In DE, the
mutation operator is used for search and selection of the
global best solution, and sometimes-scattered crossover is
also used for generating better solutions [15]. In this paper,
DE with jitter [17] has been utilized in the design process.

4.7.1. Mutation. A mutation vector is generated for each
target vector xi,G a and is given as

vi,G+1 � xi,G + K · xr1,G −xi,G􏼐 􏼑 + F · xr2,G −xr3,G􏼐 􏼑, (18)

where r1, r2, r3 ∉ 1, 2, . . . ,NP{ } are generated randomly and
cannot be same, F is the scaling factor, and K is the com-
bination factor.

Modelling and Simulation in Engineering 5
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4.7.2. Crossover. &e trial vector uji,G+1 is generated by the
crossover operator by blending the parent with the mutated
vector and is given as

uji,G+1 �
vji,G+1 if rndj ≤CR􏼐 􏼑 or j � rni,

qji,G if rndj >CR􏼐 􏼑 or j≠ rni,

⎧⎪⎨

⎪⎩
(19)

where j � 1, 2, . . . , D, random vector rj ∈ [1, 0], crossover
constant CR ∈ [1, 0], and randomly chosen index
rni ∈ (1, 2, . . . , D).

4.7.3. Selection. In selection, any individual from the pop-
ulation can form the parent despite of its fitness. After
mutation and crossover, the competency of the child is
assessed and equated with the competency of the parent and
the individual with a better competency value is chosen.

4.8. Imperialist Colony Algorithm. Imperialist colony algo-
rithm is inspired by the imperialist competition [46]. Ini-
tially, a population is generated, and each member is called
as country and is divided into two types: (a) colonies and (b)
imperialists. &ese empires compete with each other; the
weakest ones fall, and the powerful ones take the possession
of their colonies; and this lays the foundation of this al-
gorithm. At the end of the competition, only one imperialist
survives, with all the colonies having the same cost of the
imperialist. &e colonies then start to move towards their
imperialist empires and follow a simple model of assimi-
lation policy. α and x are uniformly distributed random
numbers and are given as

x ∼ U(0, α × d),

α ∼ U(−c, c),
(20)

where α and c are random numbers and are used to modify
the area of the empire.

Both the power of the imperialist and its colonies to-
gether form the strength of the nation. &e empire that fails
to adhere with the competition becomes extinct. &e
competition mainly strengthens the empire and decreases
the power of the weak nations and makes them extinct. &e
competition amongst empires is a way to converge them
towards a single powerful empire in the world and with all
the other countries as its colonies.

4.9. Invasive Weed Optimization. In 2006, Mehrabian in-
troduced the invasive weed optimization (IWO) algorithm
[47], which mimics the spreading strategy of the weeds.
Weeds are regarded as unwanted plants and are very tough
and adjustable whichmakes them very unwanted in farming.
&e IWO algorithm uses the common operators of seeding,
growth, and competition. &e algorithm consists of fol-
lowing main phases:

4.9.1. Initialization. In this phase, a population of weeds is
randomly generated.

4.9.2. Reproduction. In this phase, only a few plants in the
population produce seeds and this depends on the fitness of
the plant. &e plant, which is least fit, will produce lesser
seeds, while the fittest one will produce the most number of
seeds, and this relation is linear.

4.9.3. Spatial Distribution. In this phase, a random dis-
persion of the seeds is carried out such that the seeds remain
nearer the parent. As the generations pass by, the standard
deviation σ of the random number is reduced from the initial
σinitial to the final σfinal in each step and is given mathe-
matically as

σiter �
itermax − iter( 􏼁

n

itern
max

σinitial − σfinal( 􏼁 + σfinal. (21)

4.9.4. Competitive Exclusion. If a weed plant fails to produce
seeds, it will become extinct; otherwise, they would take over
the world. So, competition limits the number of plants in the
colony. As the generations pass, it is desired that the fitter
plant reproduce more than the unfit ones. When a maxi-
mum number of weeds Pmax in a colony is reached, the
elimination of the unfit weeds kick in. &e weeds with
minimum fitness are eliminated, and new seeds are gen-
erated and dispersed by healthier plants using reproduction
and spatial distribution, and at the end, the fitness is eval-
uated. &e weeds with minimum fitness are eliminated, and
the process goes on and on till the stopping criteria is met.

4.10. TLBO. In 2011, motivated by the process of teaching
and learning, Rao et al. introduced teaching-learning-based
optimization (TLBO) [48]. &e essence of the TLBO is that
the teacher influences the performance of the students in the
classroom. &e algorithm works in two stages: (a) teacher
phase and (b) learner phase. Teacher is regarded the
influencer, and students in the class can learn from the
teacher and also from the interaction among themselves.&e
grades monitor the measure of learning and are directly
influenced by the teacher. TLBO is a population-based al-
gorithm, where n is the number of learners (population size),
m is the different subject the pupil has to learn (the di-
mension of the problem), and the teacher is considered as
the best solution amongst all solutions. Both the phases of
TLBO are discussed as follows.

4.10.1. Teaching Phase. In the 1st phase of TLBO, the stu-
dents learn form the teacher. &e teacher is regarded as the
elite being and shares his expertise with the students to
increase their knowledge (the mean result). Initially, a
random population is generated, and the individual with the
minimum fitness value is chosen as a teacher (for mini-
mization problems), and this information is shared with the
students to increase their mean scores from MA to MB. &e
teacher tries to increase the mean of the class, by bringing it
closer to its value, but it is also dependent on the capability of
learners.
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Suppose MI be the mean result and teacher be Ti at any
iteration i. &e teacher Ti will try to improve the mean by
converging it towards its own level, and the new mean is
given by Mnew [7] and is given by

Diff Meani � ri Mnew −TFMi( 􏼁, (22)

where TF is the teaching factor and ri is any random number
between [0, 1].

Teaching factor is limited to 1 or 2 only and is chosen by
TF with equal probability:

TF � round[1 + rand(0, 1) 2− 1{ }]. (23)

&e new solution Xnew is generated by adding the dif-
ference mean as given by

Xnew,i � Xold,i + Diff Meani. (24)

4.10.2. Learner Phase. In the learning phase, the pupils learn
from mutual interaction. &e interactions are random and
happen if and only if the grade of one student is larger than
other. For two learners Xi and Xj(i≠ j), the mathematical
expression for the learning phase is as

Xnew,i � Xold,i + ri Xi −Xj􏼐 􏼑 if f Xi( 􏼁<f Xj􏼐 􏼑,

Xnew,i � Xold,i + ri Xj −Xi􏼐 􏼑 if f Xi( 􏼁>f Xj􏼐 􏼑.
(25)

&e new solution is accepted only when it minimizes or
maximizes the objective function. As the teaching-learning
process progresses, the level of knowledge of learners in-
creases towards to that of the teacher and the algorithm
converges towards a solution.

4.11. Ant ColonyOptimization. Ant colony optimization is a
probabilistic metaheuristic algorithm inspired by the be-
havior of ants for finding the optimal path from their colony
to the food source [49]. Each ant lays a trail of pheromones,
which act as a guide for the following ant. &e algorithm has
three main steps: initialization, formulation of the ant so-
lution, and upgrading the pheromone trail.

&e global ant system updates the pheromone trail, and
all the ants in the colony have to share the information of
their journeys and the deposition of the pheromone.
Mathematically, it is given as

τij(t + 1) � (1− ρ)τij(t) + 􏽘
K

Q

LK
, (26)

where τij is the probability between town i and j, Q is taken
as a constant, LK is the length of the tour by theKth ant, and ρ
is the evaporation rate of the pheromone.

5. QFT Design Requirements

QFT controller is primarily implemented to mitigate the
consequences of parametric variations of the uncertain dy-
namics of the plant. &e synthesis of the controller K(s) and
prefilter F(s) is carried out by shaping the open-loop trans-
mission transfer function L0(s) � K(s)G0(s) on the Nichols

charts such that a set of predefined performance objectives are
met. &ese predefined performance objectives form the
bounds that check the loop-shaping process. For designing
the QFT controller for the buck convertor, the objectives of
robust stability, tracking, and sensitivity have been considered
in the design process [50]. &e range of design frequencies
considered in this paper is ω � [0.4, 0.8, 1.2, 1.7, 2.1, 10, 25, 50,
100, 200] rad/sec, and the designed QFT controller must
satisfy the design requirements at each design frequency.

5.1. Robust Stability. For the closed loop system to assure
robust stability, the minimization of the maximum mag-
nitude of the closed-loop frequency response of the closed-
loop system at each design frequency is desired. Mathe-
matically, it is given as

L(jω)

1 + L(jω)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ δ1, (27)

where L(jω) � K(jω)G0(jω) is the open-loop transfer
function and δ1 is a constant.

Equation (28) gives the maximum variability of mag-
nitudes at each ωi for the uncertain plant G(jω) and is given
by δP(jωi). Equation (29) gives the difference between the
upper and lower tracking bounds:

δP jωi( 􏼁 � G jωi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − G0 jωi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (28)

δR jωi( 􏼁 � TU jωi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − TL jωi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (29)

δL(jωi) gives the maximum variation of magnitude of
the closed-loop system in equation (30). For the system to be
robustly stable, the minimization of δL(jωi) has been
considered, it must follow the following constraint, and
δL(jωi)< δR(jωi):

δL jωi( 􏼁 �
K jωi( 􏼁 · G jωi( 􏼁

1 + K jωi( 􏼁 · G jωi( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−

K jωi( 􏼁 · G0 jωi( 􏼁

1 + K jωi( 􏼁 · G0 jωi( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(30)

5.2. Tracking Performance. Tracking ratios guide the shaping
of the open-loop transmission, such that a set of time- and
frequency-domain specifications is satisfied. &e upper and
lower tracking ratios are declared at the starting of the design
process.Mathematically, it is given as in the following equation:

TL(jω)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
F(jω)L(jω)

1 + L(jω)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ TU(jω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (31)

Upper TU(jω) and lower TL(jω) bounds are given by
equations (8) and (9), respectively, as

TU(jω) �
2.95 × 109

s2 + 5.4 × 105 · s + 2.95 × 109
,

(32)

TL(jω) �
1.48 × 1012

s3 + 63.6 × 103 · s2 + 5.89 × 108 · s + 1.48 × 1012
.

(33)
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Minimization of δF(jωi) has to be carried out at each
design frequency, so that the tracking bounds are satisfied
and is given mathematically as

δF jωi( 􏼁 �
TU jωi( 􏼁−TL jωi( 􏼁

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
−

F jωi( 􏼁 · L jωi( 􏼁

1 + L jωi( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (34)

5.3. Sensitivity. &e designed system must be immune to
external disturbances. So, minimization of the sensitivity
ensures that and is given mathematically as

JS � S jωi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (35)

where

S jωi( 􏼁 �
1

1 + G jωi( 􏼁K jωi( 􏼁
. (36)

6. Synthesis of the QFT Controller and Prefilter
Using Metaheuristic Algorithms

&e QFT controller and prefilter must satisfy the design
specifications of robust stability, tracking performance, and
sensitivity. &e QFT controller synthesis problem has been
expressed as an optimization problem which offers a tem-
plates-and-bounds-free approach for designing optimal
QFT controllers within very less time and also naı̈ve loop-
shaping experience. In this paper, a standard PID controller
and a fixed structure prefilter have been chosen and are given
by equations (37) and (38) respectively:

K(s) � KP +
KI

s
+ KD · s (37)

F(s) �
a

b · s + a
(38)

Algorithms mentioned in Section 4 have been used to
solve the QFT design problem. &ese algorithms aim at
finding the optimum values for the controller, and the
prefilter gains [KP, KI, KD, a, b] such that the predefined
QFT objectives are satisfied. Equation (39) gives the QFT
controller synthesis objective function, which has been
expressed as aggregate of function:

J � α1 · δL jωi( 􏼁 + α2 · δF jωi( 􏼁 + α3 · JS, (39)

where the values of α1, α2, and α3 have been carefully set to
[1, 100, 100] based upon several trials.

7. Results and Discussions

In this paper, the voltage mode-controlled DC-DC buck
convertor is considered. &e parameters of the physical
components in Table 1 have been used to derive the nominal
plant transfer function, given by equation (40). &e pro-
posed objective function J given by equation (39) has been
minimized using the metaheuristic algorithm:

G0(s) �
s + 3.54 × 108

s2 + 1415.19 · s + 1.48 × 107
. (40)

&e optimal QFT controller and prefilter obtained from
the automated synthesis are given by KBA and FBA are the
controller and prefilter obtained by the bat algorithm, KFPA
and FFPA are the controller and prefilter obtained by the
flower pollination algorithm, KBBO and FBBO are the con-
troller and prefilter obtained by the biogeography-based
optimization algorithm, KHS and FHS are the controller and
prefilter obtained by the harmony search algorithm, KDE and
FDE are the controller and prefilter obtained by differential
evolution, KICA and FICA are the controller and prefilter
obtained by the imperialist colony algorithm, KIWO and
FIWO are the controller and prefilter obtained by the invasive
weed optimization algorithm, KTLBO and FTLBO are the
controller and prefilter obtained by the teaching-learning-
based optimization algorithm, and KACO and FACO are the
controller and prefilter obtained by the ant colony opti-
mization algorithm.

To compare the designed QFT-based controller and
prefilter, the results have been compared with several
classical controller synthesis methodologies. KZN gives the
transfer function of the controller obtained using the clas-
sical PID controller design method of Ziegler–Nichols. KIMC
gives the transfer function of the controller obtained using
classical IMC-based controller synthesis, and KLIbarra and
FLIbarra gives the transfer function of the QFT controller
obtained [5] using the classical QFTsynthesis process and is
a 3rd order controller with very large gain values:

KBA(s) � 207.69 +
854.89

s
+ 15.202 · s,

FBA(s) �
3220.644

0.877 · s + 3220.644
,

KFPA(s) � 106.613 +
1320

s
+ 9.791 · s,

FFPA(s) �
3976.568

1.084 · s + 3976.568
,

KBBO(s) � 1012.32 +
8147.32

s
+ 100.32 · s,

FBBO(s) �
3102.3

1.27 · s + 3102.3
,

KHS(s) � 118.899 +
1364.655

s
+ 14.22 · s,

FHS(s) �
4132.538

1.09 · s + 4132.538
,

KDE(s) � 98.4 +
3007.43

s
+ 9.88 · s,

FDE(s) �
3500.93

1.2 · s + 3500.93
,

KICA(s) � 470.578 +
1968.2

s
+ 26.396 · s,

FICA(s) �
3758.2

1.47 · s + 3758.2
,
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KIWO(s) � 286.88 +
1480.6

s
+ 10 · s,

FIWO(s) �
4626.8

1.1 · s + 4626.8
,

KTLBO(s) � 120.582 +
1521.81

s
+ 48.364 · s,

FTLBO(s) �
4031.85

1.11 · s + 4031.85
,

KACO(s) � 9.7 × 108 +
−6.39 × 1010

s
+ 1.303 × 1012 · s,

FACO(s) �
1179.27

0.89 · s + 1179.27
,

KZN(s) � 0.9374 +
376.785

s
+ 5.83 × 10−5 · s,

KIMC(s) � 160.49
(0.00026 · s)2 + 9.6 × 10−5 · s + 1􏼐 􏼑

2.8 × 10−9 · s2 + s
,

KLIbarra(s) �
5.44 × 1012 · s2 + 5.44 × 1016 · s + 1.142 × 1020

2.1 × 107 · s3 + 3.675 × 1012 · s2 + 7.875 × ·1016s
,

FLIbarra(s) �
3450

s + 3450
. (41)

7.1. Nominal Case. Figures 3 and 4 show the compared
closed-loop step and frequency response of the nominal
system with the optimal controller and prefilter parameters
obtained after optimization. &e various time-domain
performance of the system is given in Table 2. From Fig-
ures 3 and 4, it can be seen that the controller and prefilter
designed using differential evolution, imperialist colony
algorithm, biogeography-based optimization, and ant col-
ony optimization fail to satisfy the design requirements in
both time and frequency domains and hence are not suitable
for application. Of all the designed QFT controllers, one
derived from artificial bee colony optimization gives the best
time response and also satisfies the frequency-domain
specifications. Also, the Ziegler–Nichols-tuned controller
offers a highly oscillatory response with an overshoot per-
centage of 51.3%. &e QFT controller designed by Ibarra
et al. [5] and IMC controller also offer satisfactory perfor-
mance both in time and frequency domains.

7.2. Parametrically Uncertain Plant (Worst Case Response).
So, to verify the robustness of the controller to parametric
uncertainties, an uncertain buck convertor is considered as

G(s) �
1.62 × 104, 3.03 × 104􏼂 􏼃 · s + 2.41 × 108, 4.52 × 108􏼂 􏼃

s2 + 1.14 × 103, 3.88 × 103[ ] · s + 1.22 × 107, 1.5 × 107[ ]
.

(42)

&e compared closed-loop step and frequency response
of the parametrically uncertain system are shown in Fig-
ures 5 and 6. From the figures, it can be clearly concluded
that the closed loop performance of the system lies within
bounds and lies within the vicinity of nominal response. But
the QFT controllers designed using differential evolution,
imperialist colony algorithm, biogeography-based optimi-
zation, and ant colony optimization fail to satisfy the design
requirements in both time and frequency domains. &e
controller designed using Ziegler–Nichols and the resultant
controller offered very poor response with very high over-
shoot percentage of 51.3%which is not acceptable and can be
seen in Figure 3. When this ZN-tuned controller is subjected
to an uncertain plant, it showed a highly oscillatory re-
sponse, as can be seen in Figure 5. Also, in frequency do-
main, the ZN-tuned controller offers a very poor response as
can be seen in Figures 4 and 6. From Figures 5 and 6, it can
be seen that the designed IMC-based controller offers a
stable and less oscillatory response but fails to satisfy the
tracking performances in time domain and frequency
domain.

8. Design Validation

8.1. Variable Input Voltage. A buck convertor with varying
input voltage has been designed in SIMULINK to test the
efficacy of the designed QFT controllers and prefilters. For
the ideal response, the buck convertor must maintain a fixed
output voltage despite of the fluctuation in the input voltage.
In this case, a fixed load of 50Ω has been considered, while
the input voltage has been varied from 20–28V for a fixed
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Figure 3: Compared step response of the closed-loop system (the
nominal case).
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Figure 5: Continued.
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Figure 4: Compared frequency response of the closed-loop system (the nominal case).

Table 2: Time-domain performance indices.

Performance indices Rise time Settling time Overshoot percentage (%)
BA 5.983 × 10−04 0.0011 0
FPA 5.989 × 10−04 0.0011 0
ABC 5.231 × 10−04 9.315 × 10−04 0
BBO 8.994 × 10−04 0.0016 0
HS 5.795 × 10−04 0.0010 0
DE 7.531 × 10−04 0.0013 0
ICA 8.593 × 10−04 0.0015 0
IWO 5.223 × 10−04 0.9045 0
TLBO 6.048 × 10−04 0.0011 0
ACO 0.0017 0.0030 0
ZN 1.83 × 10−04 1.021 51.3
Ibarra 6.368 × 10−04 0.0011 0
IMC 5.72 × 10−04 0.001 0
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Figure 5: Compared time-domain worst case response of the closed-loop system: (a) BA; (b) FPA; (c) ABC; (d) BBO; (e) HS; (f ) DE; (g) ICA;
(h) IWO; (i) TBLO; (j) ACO; (k) Ibarra et al; (l) Zeigler–Nichols; (m) IMC.
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output of 12V. &e plot for load voltage for variable input
voltages has been shown in Figure 7(a). &e plot for load
voltage and load current is shown in Figure 7(b). From
Table 3, it can be seen that the QFTcontroller designed using

flower pollination algorithm offers the minimal current and
voltage ripples, as can be seen in Figure 8, when compared to
other metaheuristic algorithms and the time- and frequency-
domain performances too lie in the design bounds.
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Figure 6: Compared frequency-domain worst case response of the closed-loop system: (a) BA; (b) FPA; (c) ABC; (d) BBO; (e) HS; (f ) DE;
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Figure 7: Plot for (a) output load voltage and the variable input voltage and (b) output current and voltage for varying input voltage case
using flower pollination algorithm-tuned QFT controller.
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&e plot for load voltage for variable input voltages and the
plot for load voltage and load current are shown in Figures 9
and 10, and it can be seen that the Ziegler–Nichols-tuned PID
controller offers a very poor response and fails to offer a
sustained DC output under variations in input voltage. Also, in

Figure 11, it can be seen that the designed IMC controller too
offers a poor response as it fails to offer a stable output in case of
varying load changes. Figure 12 shows the plot for load voltage
for variable input voltages and the plot for load voltage and load
current for the QFTcontroller and prefilter designed by Ibarra
et al. [5] and only attains an average voltage output of 11.8V.
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Figure 9: Output voltage across load under variable input voltage
for ZN-PID controller.
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Figure 10: Output current and voltage for varying input voltage for
ZN-PID controller.
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Figure 8: Plot for output current and voltage ripple for varying input voltage case using flower pollination algorithm-tuned QFTcontroller.

Table 3: Convertor performance parameters (variable input voltage).

Parameters Voltage ripple (ΔV) (%) Current ripple (ΔI) (%)
BA 1.167 1.042
FPA 0.833 0.833
ABC 0.833 1.041
BBO 1.083 1.375
HS 1.167 1.25
DE 0.833 1.041
ICA 1.041 1.041
IWO 1.083 1.375
TLBO 1.041 1.041
ACO 1.041 1.041
ZN 0.477 0.333
IMC 0.375 0.479
Ibarra 0.67 0.67
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8.2. Variable Load. To check the efficacy of the designed
robust QFT-based control scheme, the buck convertor with
varying load has been considered. Here, the input voltage
has been fixed at 48V, for obtaining a fixed output voltage of
24V. &e variation in the resistive output load has been
considered and has been varied form 2Ω to 57Ω. Figure 13
shows the simulation results for the output voltage as the
load is varied from 2Ω to 57Ω, and it can be seen that, as the
load changes, the variation in load current can be witnessed
while the designed the designed QFT-based control system
successfully maintains a constant output voltage of 24V. In
Figure 14, the amount of ripple content in the output voltage
and current is shown, and it can be seen from the simulation
that both the output voltage and current have extensively
minimal ripple content. Convertor performance parameters
are given in Table 4.

Figures 15 and 16 shows the plot for the variations in
load voltage and load current when the load changes for the
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Figure 11: Plot for (a) output load voltage and the variable input voltage and (b) output current and voltage for varying input voltage case
using the IMC controller.
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Figure 12: Plot for (a) output voltage across load under variable input voltage and (b) output current and voltage for varying input voltage
using the QFT controlled proposed by Ibarra.
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Figure 13: Plot for load current and voltage for varying load using
the flower pollination algorithm-tuned QFT controller.
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Ziegler–Nichols-tuned PID controller and IMC-based
controller. From the figures, it can be seen that both these
controller fails to stabilize the output voltage when load
changes.

Figure 17 shows the plot for the variations in load voltage
and load current when the load changes for the QFT con-
troller designed by Ibarra et al. [5].

9. Conclusions

In DC-DC convertors, nonlinear behavior due to switching
operations and parametric uncertainties due to continuous
operations make it hard to yield quality output overtime. In
this paper, the automatic synthesis of the QFT controller
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Figure 14: Plot for output current and voltage ripple for varying load case using flower pollination algorithm-tuned QFT controller.

Table 4: Convertor performance parameters (variable load).

Parameters Voltage ripple (ΔV) (%) Current ripple (ΔI) (%)
BA 1.458 1.271
FPA 1.0417 1.0294
BBO 1.146 1.102
HS 1.146 1.101
DE 1.25 1.203
ICA 1.146 1.101
IWO 1.25 1.203
TLBO 1.25 1.186
ACO 1.146 1.102
Ibarra 1.36 1.416
IMC 0.724 0.692
ZN 0.267 0.294
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Figure 15: Plot for load current and voltage for varying load using
Ziegler–Nichols-tuned PID controller.
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Figure 16: Plot for load current and voltage for varying load using
the IMC-based controller.
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Figure 17: Plot load current and load voltage for varying load using
the QFT controller proposed by L Ibarra.
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and prefilter has been carried out using metaheuristic al-
gorithms. &e design process has been posed as an opti-
mization problem, which eliminates the need of generation
of templates and bounds and eases the design process. &e
flower pollination algorithm-based designed controller
satisfies the design requirement both in the time and
frequency domains and offers better performance than
other algorithms. At the end, the designed controller has
been implemented for a Simulink model of the DC-DC
converter for two different cases of varying input voltage.
&e designed controller significantly reduces the voltage
and current ripples and thus offering a quality voltage and
current characteristics.
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&e data used to support the findings of this study are in-
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